CHEMISTRY OLYMPIAD 2024

MARKING SCHEME PRELIMINARY ROUND 2
To be conducted from 19 until 22 March 2024

SCHEIKUNDE OLYMPIADE

Maastricht University

- This preliminary round consists of 20 multiple choice questions divided over 8 topics and 3 problems with a total of 15 open questions.
- The maximum score for this work is 95 points (no bonus points).
- Required materials: (graphic) calculator and BINAS $6^{\text {th }}$ or $7^{\text {th }}$ edition or ScienceData $1^{\text {st }}$ edition or BINAS $5^{\text {th }}$ edition, English version.
- For each question the number of points you can score are given.
- The attached marking scheme must be used when grading the work. In addition, the general rules for the Dutch Central Exams apply.

Problem 1 Multiple-choice questions

For every correct answer: 2 points

Carbon chemistry

2

Reaction rate and equilibrium

| 4 | C | The second step determines the rate, for which the following applies: |
| :--- | :--- | :--- | $s=k[\mathrm{HOOBr}][\mathrm{HBr}]$.

The equilibrium constant expression of step 1 is $K=\frac{[\mathrm{HOOBr}]}{\left[\mathrm{O}_{2}\right][\mathrm{HBr}]}$.
So $[\mathrm{HOOBr}]=K\left[\mathrm{O}_{2}\right][\mathrm{HBr}]$.
The rate expression becomes $s=k K\left[\mathrm{O}_{2}\right][\mathrm{HBr}][\mathrm{HBr}]=k^{\prime}\left[\mathrm{O}_{2}\right][\mathrm{HBr}]^{2}$.

5	B	The following applies: $K_{\mathrm{p}}=\frac{p_{\mathrm{Y}} \times p_{\mathrm{Z}}}{p_{\mathrm{X}}}$ and $p_{\mathrm{X}}+p_{\mathrm{Y}}+p_{\mathrm{Z}}=p$ and $p_{\mathrm{Y}}=p_{\mathrm{Z}}$ so $p_{\mathrm{Y}}=p_{\mathrm{Z}}=\frac{p-p_{\mathrm{X}}}{2}=\frac{3}{7} p$ $\quad$$\frac{3}{7} p \times \frac{3}{7} p$ $\frac{1}{7} p$ and $K_{\mathrm{p}}=\frac{9}{7} p$

Structures and formulas

6	F	In the molecule $\mathrm{Cl}-\mathrm{N}=\mathrm{C}=\mathrm{O}$, the N atom also has a non-bonding electron pair. N therefore has 3 electron domains and $\angle \mathrm{CINC}$ will be (approximately) 120°. C has 2 electron domains and $\angle \mathrm{NCO}$ is therefore 180°.
$\mathbf{7}$	C	The electron configuration of 32 Ge in the ground state is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{2}$. The set of quantum numbers $n=4, l=1, m_{l}=1, m_{\mathrm{s}}=+1 / 2$ corresponds to an electron in a $4 p$ orbital. The first three quantum numbers at C indicate that this electron would be in the same $4 p$ orbital as the mentioned electron. This is not possible because the second electron must be in a different 4p orbital A corresponds to an electron in a 3d orbital. B corresponds to an electron in the $4 s$ orbital. D corresponds to the second electron in the 4p level, which is in another 4p orbital.
$\mathbf{8}$	E	The bond between the two C atoms is a σ-bond and each of the triple bonds consists of one σ-bond and two π-bonds.

pH / acid-base

9	B	The graph shows a titration of a weak base with a strong acid (the initial pH is higher than 7 and the pH at the equivalence point is lower than 7).
10	B	The following reaction occurs: $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$. For the buffer solution that is created: $\begin{aligned} & \mathrm{pH}=\mathrm{pK} K_{\mathrm{a}}-\log \frac{\text { moles of } \mathrm{H}_{2} \mathrm{PO}_{4}^{-}}{{\mathrm{moles} \text { of } \mathrm{HPO}_{4}^{2-}}_{2-} \text { or } 6.90=7.21-\log \frac{\text { moles of } \mathrm{H}_{2} \mathrm{PO}_{4}^{-}}{\text {moles of } \mathrm{HPO}_{4}^{2-}}} \\ & \log \frac{\text { moles of } \mathrm{H}_{2} \mathrm{PO}_{4}^{-}}{\text {moles of } \mathrm{HPO}_{4}^{2-}}=7.21-6.90=0.31 \text { or } \frac{\text { moles of } \mathrm{H}_{2} \mathrm{PO}_{4}^{-}}{\text {moles of } \mathrm{HPO}_{4}^{2-}}=10^{0.31}=2.0 . \end{aligned}$ Suppose that $a \mathrm{~mL}$ of 1.0 M NaOH solution was added, then $\frac{500 \times 0.200-a \times 1.0}{a \times 1.0}=2.0$; solving this equation gives $a=33(\mathrm{~mL})$.

Redox and electrochemistry

11	F	Zn^{2+} is a stronger oxidising agent than $\mathrm{H}_{2} \mathrm{O} . \mathrm{Zn}$ is a stronger reducing agent than $\mathrm{H}_{2} \mathrm{O}$.
12	D	In the Nernst equation for half-reaction I [H^{+}] is present, and in the Nernst equation for half-reaction II $\left[\mathrm{OH}^{-}\right]$is present. Both concentrations are determined by the pH of the solution.
13	D	The half-reaction at the negative electrode can be represented as: $\mathrm{CO}_{2}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} .$ The maximum amount that can be formed is: $\frac{0.370\left(\mathrm{Cs}^{-1}\right) \times 200(\mathrm{~min}) \times 60\left(\mathrm{~s} \mathrm{~min}^{-1}\right)}{9.649 \cdot 10^{4}\left(\mathrm{Cmol}^{-1}\right)} \times \frac{1}{6}=0.0767 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} .$ So $\frac{0.0530}{0.0767} \times 10^{2} \%=69.1 \%$ of the current is used for the conversion of CO_{2} into $\mathrm{CH}_{3} \mathrm{OH}$.

Analysis

14	A	Al^{3+} and $\mathrm{SO}_{4}{ }^{2-}$ are both oxidising agents. $\left(I^{-}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right.$ and Sn^{2+} are reducing agents and can be oxidised by dichromate, forming $\left.\mathrm{Cr}^{3+}.\right)$
15	D	In the resulting solution, $\left[\mathrm{MnO}_{4}^{-}\right]=\frac{0.100}{0.600} \times 3.00 \cdot 10^{-4}=5.00 \cdot 10^{-5} \mathrm{~mol} \mathrm{~L}$ The volume of the resulting solution is 100.0 mL. So, $50.0 \times 3.00 \cdot 10^{-4}-100.0 \times 5.00 \cdot 10^{-5}=1.00 \cdot 10^{-2}{\mathrm{mmol} \mathrm{MnO}_{4}-}^{l}$ was converted. This has reacted with $\frac{5}{2} \times 1.00 \cdot 10^{-2}=2.50 \cdot 10^{-2} \mathrm{mmol} \mathrm{SO}_{3}{ }^{2-}$.
Therefore, the molarity of the sodium sulphite solution was $\frac{2.50 \cdot 10^{-2}}{50.0}=5.00 \cdot 10^{-4} \mathrm{~mol} \mathrm{~L}$		

Chemical calculations

16 C $\quad 900^{\circ} \mathrm{C}$ is $1173 \mathrm{~K}, 2.00 \mathrm{~atm}$ is $2.02 \cdot 10^{5} \mathrm{~Pa}$ and $0.826 \mathrm{~g} \mathrm{dm}^{-3}$ is $0.826 \cdot 10^{3} \mathrm{~g} \mathrm{~m}^{-3}$. Let the molar mass be $\mathrm{M} \mathrm{g} \mathrm{mol}^{-1}$, then $1.00 \mathrm{~m}^{3}$ of the gas contains $\frac{0.826 \cdot 10^{3}}{M}$ moles. According to the ideal gas law, $p V=n R T$ or $2.02 \cdot 10^{5} \times 1.00=\frac{0.826 \cdot 10^{3}}{M} \times 8.314 \times 1173$ or $M=\frac{0.826 \cdot 10^{3}}{2.02 \cdot 10^{5} \times 1.00} \times 8.314 \times 1173=39.9 \mathrm{gmol}^{-1}$.
That is the molar mass of Ar .

| 17 | C
 Part of the Zn has been converted into $\mathrm{Zn}(\mathrm{OH})_{2}$ in the block. The extra mass is all
 $\mathrm{OH}^{-}: 140.2 \mathrm{~g}-113.0 \mathrm{~g}=27.2 \mathrm{~g} \mathrm{OH}$
 corresponds to $\frac{1.60}{2}=0.800$ moles of Zn^{2+} and that is $\frac{27.2}{17.008}=1.60 \mathrm{~mol} \mathrm{OH}^{-}$. That
 converted.
 There were originally $\frac{113.0}{65.38}=1.728$ moles of $\mathrm{Zn}(0)$; in the final block the amount of been
 $\mathrm{Zn}(0)$ is therefore $1.728-0.800=0.928 \mathrm{~mol} \mathrm{Zn}(0)$.
 The ratio $\mathrm{Zn}(0): \mathrm{Zn}(I I)$ is therefore $0.928: 0.800=1.16: 1.00$. |
| :--- | :--- | :--- |

Thermochemistry and Green Chemistry

18	D	$E \text {-factor }=\frac{\text { total mass of all reactants }- \text { mass of desired product }}{\text { mass of desired product }}=6.5$ If the percentage yield is η, then: $6.5=\frac{2 \times 183.52+5 \times 32.00+2 \times 60.09-2 \times 63.55 \times \eta}{2 \times 63.55 \times \eta} .$ This results in $\eta=0.68$, so the percentage yield is 68%.
19	D	$\begin{array}{\|l} 2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{CS}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{CO}_{2} \\ 2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2}+\mathrm{CS}_{2}+Z \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{CO}_{2} \\ \text { So } \Delta_{\mathrm{r}} \mathrm{H}_{3}=2 \times \Delta_{\mathrm{r}} H_{1}^{0}-\Delta_{\mathrm{r}} H_{2}^{0}=2 \times(-518.2)-67.8=-1104.2 \mathrm{~kJ} \mathrm{~mol}^{-1} . \end{array}$
20	B	$\Delta G^{0}=\Delta H^{0}-T \Delta S^{0}$ At B, 2 moles of gas are formed from 2 moles of gas. In the other reactions the amount of moles of gas increases. So for $B, \Delta S^{0}$ will be much closer to zero than for the other reactions.

Open questions

Problem 2 Hydrogen for a fuel cell

व1 Maximum score 3
An example of a correct calculation is:

$$
\frac{0.100}{24.5} \times \frac{1}{92} \times 101.1 \cdot 10^{3}=4.5(\mathrm{mg})
$$

- conversion from $0.100 \mathrm{dm}^{3} \mathrm{H}_{2}$ to moles: divide $0.100\left(\mathrm{dm}^{3}\right)$ by $24.5\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \quad 1$
- calculation of the amount of moles of Ru: divide the amount of moles of H_{2} by $92\left(\mathrm{~mol} \mathrm{~mol}^{-1}\right)$
conversion from the amount of moles of Ru to mg: multiply the amount of moles of Ru by $101.1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ and by $10^{3}\left(\mathrm{mg} \mathrm{g}^{-1}\right)$
口2 Maximum score 4
An example of a correct calculation is:
$(1.0 \times 0.100) \times 4 \times 24.5: 0.100=98(\mathrm{~min})$
- calculation of the amount of moles of NaBH_{4} : multiply $1.0\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)$ by $0.100(\mathrm{~L})$
- calculation of the amount of moles of H_{2} : multiply the amount of moles of NaBH_{4} by 4
- conversion from moles of H_{2} to dm^{3} : multiply the amount of moles of H_{2} by $24.5\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \quad 1$
- calculation of the amount of minutes: divide the amount of dm^{3} of H_{2} by $0.100\left(\mathrm{dm}^{3} \mathrm{~min}^{-1}\right) \quad 1$

Note

When in the answer to question 1 a wrong value is used for V_{m} and in the answer to question 2 that same wrong value is used for V_{m}, do not penalize this again.

口3 Maximum score 4
An example of a correct calculation is:
(At the temperature T that is needed, applies that:)
$k_{T}=2 \times k_{298}$

$$
E_{\mathrm{a}}=R \times \frac{T_{1} \times T_{2}}{T_{1}-T_{2}} \ln \frac{k_{T_{1}}}{k_{T_{2}}}
$$

$4.2 \cdot 10^{4}=8.314 \times \frac{298 \times T}{298-T} \ln \frac{k_{298}}{k_{T}}=8.314 \times \frac{298 \times T}{298-T} \ln \frac{1}{2}$
$\frac{298 \times T}{298-T}=\frac{4.2 \cdot 10^{4}}{8.314 \times \ln \frac{1}{2}}=-7.29 \cdot 10^{3}$
$T=311 \mathrm{~K}$

[^0]－4 Maximum score 4
An example of a correct calculation is：
$\Delta E^{0}=E_{\text {ox }}^{0}-E_{\text {red }}^{0}=+0.40-(-0.83)=+1.23 \mathrm{~V}$
$\Delta G^{0}=-n F \Delta E^{0}=-2 \times 9.649 \cdot 10^{4} \times 1.23=-2.37 \cdot 10^{5} \mathrm{~J}_{\left(\mathrm{mol}^{-1} \mathrm{H}_{2} \mathrm{O}\right)}$
．calculation of ΔE^{0}
－notion that $n=2$ mol e－per mol of $\mathrm{H}_{2} \mathrm{O} \quad 1$
－rest of the calculation correct 1
－correct unit of $\Delta G^{0} \quad 1$

Problem 3 A high－temperature superconductor
口5 Maximum score 3
$2 \mathrm{Y}_{2}\left(\mathrm{CO}_{3}\right)_{3}+8 \mathrm{BaCO}_{3}+12 \mathrm{CuCO}_{3}+(1-2 x) \mathrm{O}_{2} \rightarrow 4 \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}+26 \mathrm{CO}_{2}$
－all formulas before and after the arrow are correct 1
－correct coefficients for $\mathrm{Y}_{2}\left(\mathrm{CO}_{3}\right)_{2}, \mathrm{BaCO}_{3}, \mathrm{CuCO}_{3}, \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}$ and $\mathrm{CO}_{2} \quad 1$
－correct coefficient for O_{2} 1
Note
If the following equation is given：
$\mathrm{Y}_{2}\left(\mathrm{CO}_{3}\right)_{3}+4 \mathrm{BaCO}_{3}+6 \mathrm{CuCO}_{3}+1 / 2(1-2 x) \mathrm{O}_{2} \rightarrow 2 \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}+13 \mathrm{CO}_{2}$
accept it as correct．
口6 Maximum score 4
An example of a correct answer：
Per mol YBCO， $0.20 \times 3=0.60 \mathrm{~mol} \mathrm{Cu}^{3+}$ is formed，and $3-0.60=2.40 \mathrm{~mol} \mathrm{Cu}^{2+}$ remains．
The total amount of positive charges is $3+2 \times 2+2.40 \times 2+0.60 \times 3=13.6$ ．
This should be equal to the total amount of negative charges：$(7-x) \times 2$ ．
From this follows that $x=0.20$ ．
－calculation of the amount of moles of Cu^{3+} that is produced 1
－calculation of the amount of moles of Cu^{2+} that remains 1
－calculation of the total amount of moles of positive and negative charges 1
－calculation of x
ロ7 Maximum score 2
$\mathrm{Cu}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{2+} \quad \times 4$
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \quad \times 1$
$4 \mathrm{Cu}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Cu}^{2+}+\mathrm{O}_{2}+4 \mathrm{H}^{+}$
－the equations of both half－reactions are correct 1
－correct combination of the equations of both half－reactions 1

Maximum score 7
An example of a correct calculation is:
21.8 mL 0.0332 M sodium thiosulfate solution contains $21.8 \times 0.0332 \mathrm{mmol} \mathrm{S} \mathrm{S}_{3}{ }^{2-}$.

This has reacted with $\frac{1}{2} \times 21.8 \times 0.0332 \mathrm{mmol}_{2}$, so the iodide has reacted with
$2 \times \frac{1}{2} \times 21.8 \times 0.0332 \mathrm{mmol} \mathrm{Cu}^{2+}$.
This is the total amount of Cu^{2+} and Cu^{3+} in the $160 \mathrm{mg} \mathrm{YBa} 2 \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}$,
therefore $160 \mathrm{mg} \mathrm{YBa}{ }_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}$ is $\frac{1}{3} \times 2 \times \frac{1}{2} \times 21.8 \times 0.0332 \mathrm{mmol}$.
The molar mass of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}$ is $\{554.2+(7-x) \times 16.00\} \mathrm{g} \mathrm{mol}^{-1}$, therefore 160 mg is $\frac{160}{554.2+(7-x) \times 16.00} \mathrm{mmol}$.
Thus $\frac{160}{554.2+(7-x) \times 16.00}=\frac{1}{3} \times 2 \times \frac{1}{2} \times 21.8 \times 0.0332$. Consequently $x=0.19$.

- calculation of the amount of mmoles of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$: multiply $21.8(\mathrm{~mL})$ by $0.0332\left(\mathrm{mmol} \mathrm{mL}^{-1}\right)$
- calculation of the amount of mmoles of iodide that reacted: divide the amount of mmoles of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ by 2
- calculation of the amount of mmoles of Cu^{2+} that reacted: multiply the amount of mmoles of iodide that reacted by 2
- calculation of the amount of mmoles of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}$ that follows from that: divide the amount of mmoles of Cu^{2+} that reacted by 3
- calculation of the molar mass of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}: 554.2+(7-x) \times 16.00\left(\mathrm{mg} \mathrm{mmol}^{-1}\right)$
- calculation of the amount of mmoles of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}$ in 160 mg : divide $160(\mathrm{mg})$ by the molar mass of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}$ (in mg mmol${ }^{-1}$)
- rest of the calculation

व9 Maximum score 4
Examples of a correct answer are:
Suppose there are p oxide ions on the edges and q on exterior faces, then $p+q=20$ and $\frac{1}{4} p+\frac{1}{2} q=7$.
Solving this system of two equations with two unknowns yields $p=12$ en $q=8$.

- notion that oxide ions on the edges contribute one fourth each
- notion that oxide ions in the exterior faces count for one half each 1
- setting up two equations with two unknowns
- solving the system of two equations with two unknowns
and
Suppose there are p oxide ions on the edges, then there are $20-p$ oxide ions on exterior faces. It follows that
$\frac{1}{4} p+\frac{1}{2}(20-p)=7$.
This results in $p=12$. Therefore, there are 12 oxide ions on the edges and 8 on exterior faces.
notion that oxide ions on the edges count for one fourth each
- notion that oxide ions on the exterior faces count for one half each
- thus $\frac{1}{4} p+\frac{1}{2}(20-p)=7$
- rest of the calculation

If, without calculation or explanation, the answer „There are 12 oxide ions on the edges and 8 oxide ions on exterior faces." is given
-10 Maximum score 4
An example of a correct answer is:
The mass of the unit cell is 666.2 u ; the volume of the unit cell is $0.382 \times 0.389 \times 1.168 \mathrm{~nm}^{3}$.
Therefore the density is:
$\frac{666.2 \mathrm{u}}{0.382 \times 0.389 \times 1.168 \mathrm{~nm}^{3}}=\frac{666.2 \mathrm{u} \times 1.66 \cdot 10^{-24} \mathrm{gu}^{-1}}{0.382 \times 0.389 \times 1.168 \mathrm{~nm}^{3} \times 10^{-21} \mathrm{~cm}^{3} \mathrm{~nm}^{-3}}=6.37 \mathrm{~g} \mathrm{~cm}^{-3}$.

- calculation of the mass of the unit cell in u
- calculation of the volume of the unit cell in nm^{3}
- calculation of the density in unm^{-3}
- conversion of the density in $u \mathrm{~nm}^{-3}$ into $\mathrm{g} \mathrm{cm}^{-3}$

Note:

When the same mistake is made in the calculation of the unit cell mass as in the calculation of the molar mass of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{(7-x)}$ in question 8, do not penalize this again.

Problem 4 Penicillin

व11 Maximum score 2
A correct answer may look as follows:

If the answer

व12 Maximum score 4
A correct answer may look as follows:

- $\mathrm{H}-\mathrm{B}^{+}$after the arrow
- the shift of electron pairs before the arrow is correctly shown
- non-bonding electron pairs before and after the arrow correctly shown
- correct structural formula including formal charges of the product after the arrow

Note

If the following answer is given:

mark this as being correct.
$\square 13$ Maximum score 3
A correct answer may look as follows:

(H has priority (4))

- a correct drawing
- correct prioritization 1
- correct indication of the configuration
-14 Maximum score 4
A correct answer may look as follows:

- beginning and end of the structural formula shown with $\sim N$ or with $-N$ or with $\cdot N$
- the terminal alanine group correctly shown
- the peptide bonds correctly shown
- the rest groups correctly shown

If in an otherwise correct answer the beginning and/or end of the structural formula is

Maximum score 3
A correct answer may look as follows:

. the peptide bond in the four-membered ring is broken

- the formed ester bond correctly shown 1
- the formed NH group correctly shown

[^0]: - Arrhenius equation was written down and potentially filled in (partially)
 - notion that by the temperature used for the calculation, T, applies that $k_{T}=2 \times k_{298}$
 - Arrhenius equation filled in (almost complete)
 - calculation of temperature needed

