CHEMISTRY OLYMPIAD 2024

MARKING SCHEME PRELIMINARY ROUND 2

To be conducted from 19 until 22 March 2024

- This preliminary round consists of 20 multiple choice questions divided over 8 topics and 3 problems with a total of 15 open questions.
- The maximum score for this work is 95 points (no bonus points).
- Required materials: (graphic) calculator and BINAS 6th or 7th edition or ScienceData 1st edition or BINAS 5th edition, English version.
- For each question the number of points you can score are given.
- The attached marking scheme must be used when grading the work. In addition, the general rules for the Dutch Central Exams apply.

Problem 1 Multiple-choice questions

For every correct answer: 2 points

Reaction rate and equilibrium

4	С	The second step determines the rate, for which the following applies: s = k[HOOBr][HBr].
		The equilibrium constant expression of step 1 is $K = \frac{[HOOBr]}{[O_2][HBr]}$.
		So [HOOBr] = $K[O_2][HBr]$. The rate expression becomes $s = kK[O_2][HBr][HBr] = k'[O_2][HBr]^2$.

5	В	The following applies:
		$K_{\rm p} = \frac{p_{\rm Y} \times p_{\rm Z}}{p_{\rm X}}$
		and
		$p_X + p_Y + p_Z = p$ and $p_Y = p_Z$
		so $p_{Y} = p_{Z} = \frac{p - p_{X}}{2} = \frac{3}{7}p$
		and $K_{p} = \frac{\frac{3}{7}p \times \frac{3}{7}p}{\frac{1}{7}p} = \frac{9}{7}p$

Structures and formulas

6	F	In the molecule Cl - N = C = O, the N atom also has a non-bonding electron pair. N therefore has 3 electron domains and \angle ClNC will be (approximately) 120°. C has 2 electron domains and \angle NCO is therefore 180°.
7	С	The electron configuration of ${}_{32}$ Ge in the ground state is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$. The set of quantum numbers $n = 4$, $l = 1$, $m_l = 1$, $m_s = +\frac{1}{2}$ corresponds to an electron in a 4p orbital. The first three quantum numbers at C indicate that this electron would be in the same 4p orbital as the mentioned electron. This is not possible because the second electron must be in a different 4p orbital A corresponds to an electron in a 3d orbital. B corresponds to an electron in the 4s orbital. D corresponds to the second electron in the 4p level, which is in another 4p orbital.
8	E	The bond between the two C atoms is a σ -bond and each of the triple bonds consists of one σ -bond and two π -bonds.

pH / acid-base

9	В	The graph shows a titration of a weak base with a strong acid (the initial pH is higher than 7 and the pH at the equivalence point is lower than 7).
10	В	The following reaction occurs: $H_2PO_4^- + OH^- \rightarrow HPO_4^{2-} + H_2O$. For the buffer solution that is created: $pH = pK_a - \log \frac{\text{moles of } H_2PO_4^-}{\text{moles of } HPO_4^{2-}}$ or $6.90 = 7.21 - \log \frac{\text{moles of } H_2PO_4^-}{\text{moles of } HPO_4^{2-}}$ $\log \frac{\text{moles of } H_2PO_4^-}{\text{moles of } HPO_4^{2-}} = 7.21 - 6.90 = 0.31$ or $\frac{\text{moles of } H_2PO_4^-}{\text{moles of } HPO_4^{2-}} = 10^{0.31} = 2.0$. Suppose that <i>a</i> mL of 1.0 M NaOH solution was added, then $\frac{500 \times 0.200 - a \times 1.0}{a \times 1.0} = 2.0$; solving this equation gives $a = 33$ (mL).

Redox and electrochemistry

11	F	Zn^{2+} is a stronger oxidising agent than H ₂ O. Zn is a stronger reducing agent than H ₂ O.
12	D	In the Nernst equation for half-reaction I $[H^+]$ is present, and in the Nernst equation for half-reaction II $[OH^-]$ is present. Both concentrations are determined by the pH of the solution.
13	D	The half-reaction at the negative electrode can be represented as: $CO_2 + 6 H^+ + 6 e^- \rightarrow CH_3OH + H_2O.$ The maximum amount that can be formed is: $\frac{0.370 (C s^{-1}) \times 200 (min) \times 60 (s min^{-1})}{9.649 \cdot 10^4 (C mol^{-1})} \times \frac{1}{6} = 0.0767 \text{ mol } CH_3OH.$ So $\frac{0.0530}{0.0767} \times 10^2 \% = 69.1\%$ of the current is used for the conversion of CO_2 into $CH_3OH.$

Analysis

14	Α	Al ³⁺ and SO ₄ ²⁻ are both oxidising agents. (I ⁻ , $H_2C_2O_4$ and Sn ²⁺ are reducing agents and can be oxidised by dichromate, forming Cr ³⁺ .)
15	D	In the resulting solution, $[MnO_4^{-1}] = \frac{0.100}{0.600} \times 3.00 \cdot 10^{-4} = 5.00 \cdot 10^{-5} \text{ mol L}^{-1}$. The volume of the resulting solution is 100.0 mL. So, $50.0 \times 3.00 \cdot 10^{-4} - 100.0 \times 5.00 \cdot 10^{-5} = 1.00 \cdot 10^{-2} \text{ mmol MnO}_4^-$ was converted. This has reacted with $\frac{5}{2} \times 1.00 \cdot 10^{-2} = 2.50 \cdot 10^{-2} \text{ mmol SO}_3^{2-}$. Therefore, the molarity of the sodium sulphite solution was $\frac{2.50 \cdot 10^{-2}}{50.0} = 5.00 \cdot 10^{-4} \text{ mol L}^{-1}$.

Chemical calculations

16	С	900 °C is 1173 K, 2.00 atm is 2.02·10 ⁵ Pa and 0.826 g dm ⁻³ is 0.826·10 ³ g m ⁻³ .
		Let the molar mass be M g mol ⁻¹ , then 1.00 m ³ of the gas contains $\frac{0.826 \cdot 10^3}{M}$ moles.
		According to the ideal gas law, $pV = nRT$ or $2.02 \cdot 10^5 \times 1.00 = \frac{0.826 \cdot 10^3}{M} \times 8.314 \times 1173$
		or $M = \frac{0.826 \cdot 10^3}{2.02 \cdot 10^5 \times 1.00} \times 8.314 \times 1173 = 39.9 \text{ gmol}^{-1}$. That is the molar mass of Ar.

17	С	Part of the Zn has been converted into $Zn(OH)_2$ in the block . The extra mass is all
		OH ⁻ : 140.2 g - 113.0 g = 27.2 g OH ⁻ , and that is $\frac{27.2}{17.008} = 1.60$ mol OH ⁻ . That
		corresponds to $\frac{1.60}{2} = 0.800$ moles of Zn^{2+} and that much Zn(0) has also been
		converted.
		There were originally $\frac{113.0}{65.38} = 1.728$ moles of Zn(0); in the final block the amount of
		Zn(0) is therefore $1.728 - 0.800 = 0.928$ mol $Zn(0)$.
		The ratio Zn(0) : Zn(II) is therefore 0.928 : 0.800 = 1.16 : 1.00.

Thermochemistry and Green Chemistry

18	D	$E-factor = \frac{\text{total mass of all reactants} - \text{mass of desired product}}{\text{mass of desired product}} = 6.5$			
		The percentage yield is η , then: 2 \times 183 52 \pm 5 \times 32 00 \pm 2 \times 60 09 \pm 2 \times 63 55 \times n			
		$6.5 = \frac{2 \times 105.52 + 5 \times 52.00 + 2 \times 00.07 - 2 \times 05.55 \times \eta}{2 \times 63.55 \times \eta}.$			
		This results in η = 0.68, so the percentage yield is 68%.			
19	D	$2 H_2S + 3O_2 \rightarrow 2 SO_2 + 2 H_2O$			
		$CS_2 + 2 H_2O \rightarrow 2 H_2S + CO_2$			
		$2 H_2 S_+ 3 O_2 + CS_2 + 2 H_2 O \rightarrow 2 SO_2 + 2 H_2 O_+ 2 H_2 S_+ CO_2$			
		So $\Delta_r H_3 = 2 \times \Delta_r H_1^0 - \Delta_r H_2^0 = 2 \times (-518.2) - 67.8 = -1104.2 \text{ kJ mol}^{-1}$.			
20	В	$\Delta G^{0} = \Delta H^{0} - T \Delta S^{0}$			
		At B, 2 moles of gas are formed from 2 moles of gas. In the other reactions the amount of moles of gas increases. So for B, ΔS^0 will be much closer to zero than for the other reactions.			

Open questions

total 55 points 15 points

1

1

1

1

Problem 2 Hydrogen for a fuel cell

□1 Maximum score 3

An example of a correct calculation is:

 $\frac{0.100}{24.5} \times \frac{1}{92} \times 101.1 \cdot 10^3 = 4.5 \text{ (mg)}$

- \cdot conversion from 0.100 dm³ H₂ to moles: divide 0.100 (dm³) by 24.5 (dm³ mol⁻¹)
- · calculation of the amount of moles of Ru: divide the amount of moles of H_2 by 92 (mol mol⁻¹)
- · conversion from the amount of moles of Ru to mg: multiply the amount of moles of Ru by 101.1 (g mol⁻¹) and by 10^3 (mg g⁻¹)
- D2 Maximum score 4

An example of a correct calculation is: $(1.0 \times 0.100) \times 4 \times 24.5 : 0.100 = 98$ (min)

- · calculation of the amount of moles of NaBH₄: multiply 1.0 (mol L⁻¹) by 0.100 (L)
- · calculation of the amount of moles of H_2 : multiply the amount of moles of NaBH₄ by 4 1
- · conversion from moles of H_2 to dm³: multiply the amount of moles of H_2 by 24.5 (dm³ mol⁻¹) 1
- · calculation of the amount of minutes: divide the amount of dm^3 of H_2 by 0.100 ($dm^3 min^{-1}$) 1

Note

When in the answer to question 1 a wrong value is used for V_m and in the answer to question 2 that same wrong value is used for V_m , do not penalize this again.

Daximum score 4

An example of a correct calculation is: (At the temperature T that is needed, applies that:) $k_T = 2 \times k_{298}$

$$E_{a} = R \times \frac{T_{1} \times T_{2}}{T_{1} - T_{2}} \ln \frac{k_{T_{1}}}{k_{T_{2}}}$$

$$4.2 \cdot 10^{4} = 8.314 \times \frac{298 \times T}{298 - T} \ln \frac{k_{298}}{k_{T}} = 8.314 \times \frac{298 \times T}{298 - T} \ln \frac{1}{2}$$

$$\frac{298 \times T}{298 - T} = \frac{4.2 \cdot 10^{4}}{8.314 \times \ln \frac{1}{2}} = -7.29 \cdot 10^{3}$$

$$T = 311 \text{ K}$$

- Arrhenius equation was written down and potentially filled in (partially) • notion that by the temperature used for the calculation, *T*, applies that $k_T = 2 \times k_{298}$
- · Arrhenius equation filled in (almost complete)
- \cdot calculation of temperature needed

1

1 1

	Problem 3 A high-temperature superconductor	24 points
	• calculation of ΔE^0 • notion that $n = 2$ mol e ⁻ per mol of H ₂ O • rest of the calculation correct • correct unit of ΔG^0	1 1 1 1
□4	Maximum score 4 An example of a correct calculation is: $\Delta E^0 = E^0_{ox} - E^0_{red} = +0.40 - (-0.83) = +1.23 \text{ V}$ $\Delta G^0 = -nF\Delta E^0 = -2 \times 9.649 \cdot 10^4 \times 1.23 = -2.37 \cdot 10^{-5} \text{ J} (mol^{-1} \text{ H}_2\text{O})$	

■5 Maximum score 3 2 Y₂(CO₃)₃ + 8 BaCO₃ + 12 CuCO₃ + (1-2x) O₂ → 4 YBa₂Cu₃O_(7-x) + 26 CO₂
all formulas before and after the arrow are correct
correct coefficients for Y₂(CO₃)₂, BaCO₃, CuCO₃, YBa₂Cu₃O_(7-x) and CO₂
correct coefficient for O₂ *Note If the following equation is given:* Y₂(CO₃)₃ + 4 BaCO₃ + 6 CuCO₃ + ½(1-2x) O₂ → 2 YBa₂Cu₃O_(7-x) + 13 CO₂ *accept it as correct.*■6 Maximum score 4 An example of a correct answer: Per mol YBCO, 0.20 × 3 = 0.60 mol Cu³⁺ is formed, and 3-0.60 = 2.40 mol Cu²⁺ remains.

The total amount of positive charges is $3 + 2 \times 2 + 2.40 \times 2 + 0.60 \times 3 = 13.6$. This should be equal to the total amount of negative charges: $(7 - x) \times 2$. From this follows that x = 0.20.

	\cdot calculation of the amount of mo	oles of Cu ³⁺ that is produced	1		
	\cdot calculation of the amount of moles of Cu^{2+} that remains				
	\cdot calculation of the total amount	of moles of positive and negative charges	1		
	· calculation of x				
□7	Maximum score 2				
	Cu^{3+} + $e^- \rightarrow Cu^{2+}$	× 4			
	$2 \begin{array}{cccccccccccccccccccccccccccccccccccc$	× 1			
	$4 \text{ Cu}^{3+} + 2 \text{ H}_2\text{O} \rightarrow 4 \text{ Cu}^{2+} + \text{O}_2$	$2 + 4 H^{+}$			

· the equations of both half-reactions are correct	1
 correct combination of the equations of both half-reactions 	1

1

1

□8 Maximum score 7

□9

An example of a correct calculation is:

21.8 mL 0.0332 M sodium thiosulfate solution contains 21.8×0.0332 mmol S₂O₃²⁻. This has reacted with $\frac{1}{2} \times 21.8 \times 0.0332$ mmol I₂, so the iodide has reacted with $2 \times \frac{1}{2} \times 21.8 \times 0.0332$ mmol Cu²⁺. This is the total amount of Cu^{2+} and Cu^{3+} in the 160 mg YBa₂Cu₃O_(7-x), therefore 160 mg YBa₂Cu₃O_(7-x) is $\frac{1}{3} \times 2 \times \frac{1}{2} \times 21.8 \times 0.0332$ mmol. The molar mass of YBa₂Cu₃O_(7 - x) is {554.2 + (7 - x) × 16.00} g mol⁻¹, therefore 160 mg is $\frac{160}{554.2+(7-x)\times 16.00}$ mmol. Thus $\frac{160}{554.2 + (7 - x) \times 16.00} = \frac{1}{3} \times 2 \times \frac{1}{2} \times 21.8 \times 0.0332$. Consequently x = 0.19. · calculation of the amount of mmoles of $S_2O_3^{2-}$: multiply 21.8 (mL) by 0.0332 (mmol mL⁻¹) · calculation of the amount of mmoles of iodide that reacted: divide the amount of mmoles of $S_2O_3^{2-}$ by 2 \cdot calculation of the amount of mmoles of Cu²⁺ that reacted: multiply the amount of mmoles of iodide that reacted by 2 \cdot calculation of the amount of mmoles of YBa₂Cu₃O_(7 - x) that follows from that: divide the amount of mmoles of Cu²⁺ that reacted by 3 \cdot calculation of the molar mass of YBa₂Cu₃O_(7-x): 554.2 + (7-x) × 16.00 (mg mmol⁻¹) \cdot calculation of the amount of mmoles of YBa₂Cu₃O_(7-x) in 160 mg: divide 160 (mg) by the molar mass of $YBa_2Cu_3O_{(7-x)}$ (in mg mmol⁻¹) · rest of the calculation Maximum score 4 Examples of a correct answer are: Suppose there are p oxide ions on the edges and q on exterior faces, then p + q = 20 and $\frac{1}{4}p + \frac{1}{2}q = 7$. Solving this system of two equations with two unknowns yields p = 12 en q = 8. · notion that oxide ions on the edges contribute one fourth each • notion that oxide ions in the exterior faces count for one half each setting up two equations with two unknowns

 \cdot solving the system of two equations with two unknowns

1

1

1

1

1

1

1

1

1

1

and

Suppose there are p oxide ions on the edges, then there are 20 - p oxide ions on exterior faces. It follows that

$$\frac{1}{4}p + \frac{1}{2}(20-p) = 7.$$

This results in p = 12. Therefore, there are 12 oxide ions on the edges and 8 on exterior faces.

 \cdot notion that oxide ions on the edges count for one fourth each

 \cdot notion that oxide ions on the exterior faces count for one half each

• thus
$$\frac{1}{4}p + \frac{1}{2}(20-p) = 7$$

· rest of the calculation

If, without calculation or explanation, the answer "There are 12 oxide ions on the edges and 8 oxide ions on exterior faces." is given

□10 Maximum score 4

An example of a correct answer is:

The mass of the unit cell is 666.2 u; the volume of the unit cell is

0.382 × 0.389 × 1.168 nm³.

Therefore the density is:

666.2 u	_	666.2 u \times 1.66 \cdot 10 ⁻²⁴ gu ⁻¹	$-6.37 \mathrm{g}\mathrm{cm}^{-3}$
$0.382 \times 0.389 \times 1.168 \text{ nm}^3$	_	$0.382 \times 0.389 \times 1.168 \text{ nm}^3 \times 10^{-21} \text{ cm}^3 \text{ nm}^{-3}$	- 0.57 gcm ·

 \cdot calculation of the mass of the unit cell in u

 \cdot calculation of the volume of the unit cell in nm^3

 \cdot calculation of the density in u nm⁻³

 \cdot conversion of the density in u nm $^{-3}$ into g cm $^{-3}$

Note:

When the same mistake is made in the calculation of the unit cell mass as in the calculation of the molar mass of $YBa_2Cu_3O_{(7-x)}$ in question 8, do not penalize this again.

1

1

1

0

1

1

1

- · a correct drawing
- · correct prioritization
- · correct indication of the configuration

Problem 4 Penicillin

In a Maximum score 2

A correct answer may look as follows:

If the answer HO^{-1} is given

D12 Maximum score 4

A correct answer may look as follows:

- \cdot H B⁺ after the arrow
- · the shift of electron pairs before the arrow is correctly shown
- · non-bonding electron pairs before and after the arrow correctly shown
- · correct structural formula including formal charges of the product after the arrow

Note

If the following answer is given:

mark this as being correct.

D13 Maximum score 3

A correct answer may look as follows:

(H has priority ④) SH S

1

1

1

1

1

1

1

D14 Maximum score 4

A correct answer may look as follows:

0		0		0
11		н		н
shown with C $\sim\!\!\sim$	or with	С-	or with	C۰

D15 Maximum score 3

A correct answer may look as follows:

\cdot the peptide bond in the four-membered ring is broken	1
 the formed ester bond correctly shown 	1
 the formed NH group correctly shown 	1